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Abstract—Numerous Drone as a Service (DaaS) applications,
such as surveillance, search and rescue, and infrastructure inspec-
tion, may employ real-time object detection to achieve computer
vision-based autonomous functions. However, running object
detection algorithms, e.g., YOLO, locally on a drone requires
extensive computational power, which is expensive in terms of
cost and energy consumption. Conversely, edge computing facil-
itates the implementation of an affordable and efficient platform
where drones compress and transmit images to an edge server for
real-time object detection. Nevertheless, DaaS designers applying
edge computing for real-time object detection must be cognizant
of the network design of an Edge Computing Enabled Real-
Time Object Detection (ECOD) platform to consistently realize
object detection in real-time. In our research, we propose utilizing
network calculus to analyze the delay performance of an ECOD
platform, which provides a principled approach for the platform
design. A testbed was implemented to evaluate the accuracy of
this approach, which was then used to analyze DaaS design
scenarios with different numbers of drones and various network
capacities.

Index Terms—Drone as a Service, Edge computing, Delay
analysis

I. INTRODUCTION

Drone as a Service (DaaS) is a growing industry to provide
customers with the hardware, software, and human resources
necessary to accomplish certain tasks using unmanned aerial
vehicles (UAVs), i.e., drones [1]. Drones can provide functions
such as asset inspection, crop monitoring, and live streaming
events, which can be useful in the energy, agriculture, and
entertainment industries [2]. Many of these tasks might require
real-time object detection for autonomous functions [20].

Object detection algorithms such as YOLO (You Only
Look Once), R-CNN (Region-based Convolutional Neural
Networks), and SSD (Single Shot Detector) require GPUs
to accelerate the inference process. However, the price of
microcomputers with GPUs, e.g., NVIDIA Jetson products,
is high. Moreover, these microcomputers weigh more and
consume more power than those without GPUs. It is better
to avoid using large and powerful microcomputers as onboard
computers for drones because the battery capacity is limited.

On the other hand, edge computing is desirable as process-
ing data at the edge of a network rather than uploading it to
the cloud reduces latency, cost, and energy consumption [3].

Thus, edge computing could be a suitable candidate for real-
time object detection on drones. Edge-assisted object detection
is not a new thing. A lot of work has been done to realize
real-time object detection using edge servers [4], [5], [22]–
[24]. However, all previous work does not pay attention to
the network analysis in their design. Considering specific
application scenarios using a swarm of drones, DaaS designers
applying edge computing must be cognizant of the network
design in terms of the traffic profile, the network device
capacity, and the delay requirements, to consistently realize
object detection in real-time.

In our research, we propose an Edge Computing Enabled
Real-Time Object Detection (ECOD) platform for DaaS, as
shown in Figure 1. We apply network calculus to analyze
the delay performance of the communication network in the
ECOD platform, which might be 4G, 5G, or WiFi. Network
calculus is a prevalent framework that provides performance
analysis of networks to model the delay performance of
networks. Based on the analysis result, we provide a principle
guideline to help designers design DaaS platforms. A testbed
has also been implemented to evaluate the accuracy of this
approach.

The major contributions of this paper include: (i) We
provide a network-calculus-based approach to analyzing the
delay performance of an ECOD for DaaS, which furthermore
offers a principle guideline to design the ECOD platform based
on 4G, 5G, and WiFi networks, ii) We propose a measurement-
based method to identify the parameters of arrival curves and
stochastic service curves needed by network calculus, and (iii)
The network-calculus-based approach has been validated by
experiments in a testbed and then used to analyze DaaS design
scenarios with different requirements.

The rest of the paper is organized as follows. Section II
discusses background knowledge of the ECOD platform and
network calculus. Section III describes the research problem of
the paper and our solution. Section IV presents the network
delay model of the ECOD platform. Section V proposes a
measurement-based approach to identify the essential param-
eters for network calculus. Section VI verifies our model by
experiments. Section VII apply our model for the design of the
ECOD platform. Finally, Section VIII concludes this paper.



Fig. 1. An Edge Computing Enabled Real-Time Object Detection Platform

II. BACKGROUND KNOWLEDGE

A. Edge Computing Enabled Real-Time Object Detection

In our research, we designed an Edge Computing Enabled
Real-Time Object Detection (ECOD) platform for Drone as a
Service (DaaS) using a F450 Quadcopter running ArduCopter
firmware, a Raspberry Pi serving as the onboard microcom-
puter, a Raspberry Pi Camera Module, and a Dell Precision
computer serving as the edge server.

Figure 1 shows how the ECOD platform for DaaS works.
The Raspberry Pi Camera Module captures an image, to which
the Raspberry Pi applies JPEG compression [8], reducing
transmission size by 90%. Next, the Raspberry Pi transmits
the compressed image to the Dell Precision computer using
the TCP protocol to guarantee data transmission reliability
through a wireless communication network. Then the Dell
Precision computer decompresses the compressed image and
runs the object detection algorithm YOLOv5 [9] on it. After
completing object detection, the result is sent to the Raspberry
Pi through the network. The Raspberry Pi decides what to do
next, given the received information.

In our research, we focus on the delay from the time when
an image is captured by the drone-onboard camera to the
time when the drone gets the object detection result, which
is called feedback time in this paper. Figure 2 shows the
feedback time in two scenarios, namely using the Raspberry Pi
only versus the ECOD platform with a TL-WR840N wireless
router. In this example, 100 images with a 1280*720 resolution
have been used. The x-axis shows the image index, and the
y-axis shows the feedback time. The average feedback time
using Raspberry Pi for object detection is 3.723 s, which is
not suitable for real-time functions or applications of drones,
e.g., obstacle avoidance. Using the ECOD platform is much
faster than using the Raspberry Pi only, achieving an average
feedback time of 0.258 s. Figure 2 also shows the processing
time needed by the edge server to run YOLO on an image for
object detection without receiving nor transmitting any data
through a network, which has a mean value of 34 ms.

B. Network Calculus

Network calculus is a mathematical framework for analyses
of delay bounds and backlog bounds experienced by traffic
flows passing through networked nodes (i.e., wired switches,
wireless routers, or base stations). It is widely used in the
delay analysis of wired and wireless networks [6], [14]–[16].
As network calculus uses per-flow per-node modeling, the
following information is needed to apply NC for analysis:

1) Network topology and traffic flow paths

Fig. 2. The time elapsed for object detection in three scenarios

2) Arrival curves of all flows where a flow’s arrival curve
describes the arrival process of the flow (details in
subsection II-B1)

3) Service curves of networked nodes where a service curve
describes the minimum service provided by a network
device, e.g., an access point, a switch, or a router (details
in subsection II-B2)

Knowing the arrival curve of a flow α(t) and the service
curve of a networked node β(t), we can derive the maximum
delay bound and backlog bound for each flow experienced at
each node using network calculus as follows. How to obtain
α(t) and β(t) is explained in subsections II-B1 and II-B2.

Equation 1 shows how to calculate the maximum delay
bound where ⊘ represents a deconvolution operator.

delay : ∀t ≥ 0 : D(t) ≤ inf{d ≥ 0|(α⊘ β)(−d)} (1)

The deconvolution ⊘ of functions f1 and f2 is defined as

deconvolution (f1 ⊘ f2)(d) = sup
u≥0

{f1(d+u)− f2(u)}. (2)

The backlog bound of the node can be calculated using

backlog : ∀t ≥ 0 : B(t) ≤ (α⊘ β) (3)

1) Arrival process and arrival curve: Obtaining the arrival
curve of a flow uses the concept of arrival process. When a
flow passes through a networked node, there is an incoming
arrival process Fin(t) of the flow representing the cumulative
amount of data arrived at the node between time 0 to t. Fin(t)
is a non-negative and non-decreasing function with Fin(0) =
0. There is also an outgoing process Fout(t) of the flow after
passing through the node, which is the incoming process of
the flow arriving at the next node of the flow path.



Definition 1. Given an arrival process Fin(t), a real-valued,
non-negative, nondecreasing function α(t) defined for any t ≥
0 is an arrival curve of Fin(t) if and only if

∀t ≥ s ≥ 0 : Fin(t)− Fin(s) ≤ α(t− s) (4)

In other words, the arrival curve α(t) is an upper bound of its
arrival process during any backlogged period [t, s].

2) Service curve: The service curve of a networked node
can be defined using a convolution operator. The following
equation shows how to calculate the convolution of f1 and f2.

convolution (f1 ⊗ f2)(d) = inf
0≤s≤d

f1(d− s) + f2(s) (5)

Definition 2. When a flow passes through a networked node,
there is an incoming arrival process Fin(t) and an outgoing
process Fout(t). A real-valued, non-negative, non-decreasing
function β(t) is the service curve of the node if and only if

Fout(t) ≥ Fin(t)⊗ β, where β(0) = 0 (6)

Theorem 1. Considering the flow passing through a series of
networked nodes Si, i = 1, ..., n, where Node Si has a service
curve βi, we can treat all nodes as one virtual node with a
service curve β = β1 ⊗ β2 ⊗ ...βn.

In some network calculus methods, such as Separate Flow
Analysis (SFA) used in [13], leftover service curve calculations
are necessary when there is more than one flow passing
through the same networked node. We provide the definition
of leftover service curves as follows.

Definition 3. Suppose two flows f1 and f2 pass through
a lossless node with arbitrary multiplexing. f1 and f2 have
arrival curves α1 and α2, respectively. If the node has a service
curve β(t), then the leftover service curve β1(t) for f1 can be
calculated as follows where [x]+ equals to max(x, 0):

β1(t) = [β(t)− α2(t)]
+ (7)

III. RESEARCH PROBLEM AND SOLUTION

Edge-assisted real-time object detection has been well inves-
tigated in recent years [4], [5], [22]–[24]. Although some work
takes the network capacity and the bandwidth usage of the
network into consideration [4], [22], none of them provides a
formal method to theoretically model the network performance
in their design. Moreover, their designs are mostly tested in
the case that an edge server is only used to do the object
detection for one device. However, in the ECOD platform,
it is common that each edge server might be responsible for
the tasks coming from more than one drone. Thus, the main
research problem becomes how to design the ECOD platform
in terms of the traffic profile, the network device capacity, and
the delay requirements.

In order to solve this problem, we apply network calculus
to analyze the delay performance of the 4G, 5G, or WiFi
network in the ECOD platform, and thus use the analysis
result to provide a guideline principle for the design of the

ECOD platform. In this paper, our solution provides i) network
calculus modeling of the ECOD platform, ii) parameters
identification for arrival curves and service curves using a
measurement-based approach, iii) verify the network calculus
result using the testbed, and iv) ECOD platform design based
on the network calculus result.

IV. MODELLING NETWORK DELAY

Since we target to provide a principle guideline for the
design of the ECOD platform, modeling the network delay
of the platform using network calculus is necessary.

As discussed in Subsection II-A, we focus on the feedback
time, which consists of several components, including the
processing time by the Raspberry Pi for image compression,
the network delay for wireless data communication, and the
processing time by the edge server for image decompression
and object detection. As the network delay is the most signif-
icant part of the feedback time and the rest of the feedback
components are constant, assuming that the edge server has
enough computational capacity, we focus on modeling network
delay since the other parts of the feedback time are mostly
constants under our assumption.

In our research, we apply network calculus to model and
analyze the network delay in an ECOD platform for DaaS. It is
normal that the network topology, along with its traffic pattern,
is a single-hop network with bidirectional flows between
drones and the edge server in the ECOD platform.

In this paper, we use the leaky-bucket arrival curve and
the rate-latency service curve, which comprise two linear
piecewise components. The leaky-bucket arrival curve can be
defined by using rate ρ and burst b as expressed by Equation
8. The rate-latency service curve can be described using rate
r and latency T , which is defined in Equation 9.

αρ,b(t) =

{
ρt+ b t > 0

0 Otherwise
(8)

βr,T (t) = [r(t− T )]+ (9)

Knowing the arrival curves and service curves, we can
provide a closed-form mathematical expression for the delay
bounds derived using network calculus in the ECOD platform.
If there is more than one drone in the system, we calculate
the leftover service curves for each drone using Equation 7.
Note that wireless networks are usually half-duplex, meaning
that bidirectional flows need to compete for the same service
while they do not in full-duplex networks.

For each drone i, there are flow i1 sourcing from drone i
to the edge server and flow i2 sourcing from the edge server
to drone i, respectively. These two flows have arrival curves
αij (t) = ρij t+bij where j is 1 or 2. Then the leftover service
curve for flow ij can be calculated as follows:

βij = [β(t)−
∑
m ̸=i

(αm1 + αm2)− αi3−j ]
+ (10)



After calculating the leftover service curve of flow ij , we
can use Equation 1 to derive the worst-case delay bound. The
delay bound Dij for flow ij can be calculated as follows:

Dij =
r ∗ T +

∑
bmn

r −
∑

m̸=i&n ̸=j ρmn

(11)

V. MODEL PARAMETER IDENTIFICATION

In Section IV, we provide a closed-form expression for
calculating the network delay in the ECOD platform. In order
to apply Equation 11, the arrival curves and the service
curve must be known. So as to make the theoretical results
conform to reality, we propose a measurement-based approach
to identify the parameters of arrival curves and the service
curve.

A. Arrival curve parameters

There are two parameters needed to be identified, which are
rate ρ and burst b, in the arrival curve. It is straightforward
to calculate these two parameters when dealing with periodic
UDP flows using Equation 12 [10], where σ is the frame size
and p is the period. However, in this ECOD platform, TCP
is used for reliable data transmission, which makes the arrival
curve parameter identification hard to evaluate due to TCP’s
retransmission mechanism.

αρ,b(t) =
σ

p
t+ σ (12)

We employ a measurement-based approach to identify the
arrival curve parameters. Each image is treated as one virtual
packet, although a (compressed) image needs to be split into
a group of packets for TCP transmission. This treatment
conforms with the model because the edge server will not start
processing a (compressed) image until all packets associated
with it are fully received. The Raspberry Pi runs a packet
sniffer [7] to record Fin(t). The average transmission rate of
the packet flow is used as rate ρ of the arrival curve. Then
Fin(t) and ρ are used to find b that meets Definition 1 using
binary search.

1) Service curve parameters: In order to measure the
service curve of a wireless router, we need to make several
assumptions. First, the drone only moves within a specific area
away from the access point (a base station or a router). This is
due to the channel fading influenced by the distance between
the drone and the access point [18]. If the distance is too
large, the signal attenuation will be significant and lead to
limited network performance [22]. Second, without the loss of
generality, the bandwidth measured at the farthest point from
the access point can reflect the minimum service provided by
the access point. Meanwhile, instead of using a deterministic
service curve, we use a stochastic service curve to reflect the
service provided by the wireless network.

Figure 3 shows the distribution of the bandwidth measure-
ment results of a TL-WR940N router at the farthest point
within a specific range (about 10 m in our lab) 1100 times.
Note that the bandwidth in this paper refers to the data rate of
the network. The measured bandwidth fluctuates significantly

Fig. 3. Network bandwidth distribution measurement of the wireless router.

due to the channel fading of the wireless network [17] ranging
from 16 Mbps to 55 Mbps. In order to evaluate the network
bandwidth under the impact of channel fading, we use a
stochastic service curve to describe the service provided by
the router. According to [19], the rate of a stochastic service
curve can be described using the rate r with its Cumulative
Distribution Function (CDF). Based on Figure 3, we consider
using the normal distribution and the Laplace distribution to
model the Probability Density Function (PDF) of the router
bandwidth. Thus, we calculate the overlapping area of the
histogram and the PDFs of the two distributions with different
parameters to determine the better PDF. The parameters of the
normal distribution are the mean and the standard deviation,
while those of the Laplace distribution are the location and the
scale. The maximum overlapping area between the histogram
and the normal distribution is 982.6 out of 1100, and the value
is 961.6 using the Laplace distribution. The two distributions
with the maximum overlapping areas are also shown in Figure
3. Therefore, we decide to use the normal distribution with the
mean being 37.3 and the standard deviation being 2.5 to model
the PDF of the rate r of the router because the overlapping
area between the histogram and this normal distribution is the
maximum. Thus, P (R = r) = 1

2.5
√
2π

e−
1
2 (

x−37.3
2.5 )2 . Then, the

CDF of the rate is also known after determining the PDF. We
can search for a T to meet the service curve meets Definition
2. In order to search for T , we use two machines with PTP
(Precise Time Protocol) time-synchronization to record Fin(t)
and Fout(t). Then, after fixing the rate r, we use binary search
to find the T corresponding to r with measured Fin(t) and
Fout(t).

VI. MODEL VERIFICATION

In this section, we verify the effectiveness of the network-
calculus-based model for the delay performance of the ECOD
platform using experimental results of the feedback time
measured in a single-hop single-drone scenario. Since network
calculus is used to analyze the network delay, we subtract
the processing time components of the edge server and the



onboard computer from the feedback time to get the network
delay experienced by the traffic.

In order to verify the network calculus result, we need to
regulate the traffic from the Raspberry Pi to the edge server.
We send a 1280*720 image from the Raspberry Pi to the edge
server every 0.1 s 100 times. After the edge server receives
each image and uses YOLO to process the image, it will
send the detection result back to the Raspberry Pi. Since the
network contains only one router, the topology and the traffic
pattern are fixed. All flows will pass through the same wireless
router to their destinations.

In order to create different scenarios for the single-router
single-drone network, we control the largest bandwidth of the
wireless network from 4 Mbps to 16 Mbps. However, the
router itself does not have an accurate bandwidth restriction
function. Thus, instead of restricting the bandwidth of network
devices, we restrict the incoming and outgoing transmission
rates of the NIC (Network Interface Card). This can be done
using the wondershaper on Raspbian [11]. In this way, the
NIC of the Raspberry Pi can be abstracted as a node whose
bandwidth is the restricted value. According to Theorem 1,
the NIC and the router can be treated as one virtual node
whose service curve is the convolution of their service curves,
meaning that the rate of the virtual node is the minimum rate
of the NIC and the network device. We have mentioned in
Section V-A1 that the router we use has a stochastic service
curve whose rate conforms to a normal distribution. A specific
rate should be chosen for the service curve to provide a
probabilistic delay bound. We decide to use 16 Mbps, which
is the smallest bandwidth in the bandwidth measurement of
the router, as the rate of the service curve. According to
the CDF of the normal distribution, the wireless router has
about 92.0% probability of providing a higher rate than 16
Mbps. The latency T of the service curve is 0.44 s under this
scenario. Thus, the service curve of the wireless router will be
β(t) = 16(t − 0.44). The probabilistic delay bounds derived
using this service curve should be able to model the delay in
approximately 92.0% cases.

In order to analyze the delay performance of network
calculus, we use SFA (Separate Flow Analysis) to derive the
worst-case delay bounds [13]. Table I shows the rates and
bursts of outgoing and incoming arrival curves under different
bandwidth restrictions in the wireless network. The incoming
and outgoing arrival curves are all captured on the onboard
computer. The outgoing flow is the flow from the onboard
computer to the edge server, and the incoming flow is the
flow from the edge server to the onboard computer. Since we
use leaky bucket arrival curves, we only need to know the rate
and the burst to determine an arrival curve.

The outgoing rate and outgoing burst in Table I defines
the arrival curves of flows from the Raspberry Pi to the edge
server. Although we restrict the bandwidth of the NIC to a
certain value, it is not guaranteed that this certain value is the
exact bandwidth that the NIC reaches. However, the bandwidth
of the NIC is described by the rate of the outgoing flow. Thus,
the outgoing rate is the real bandwidth of the NIC.

Fig. 4. Boxplots for network delays and delay bounds derived from network
calculus under different bandwidths in the wireless network

When calculating the worst-case delay bound for the traffic
from the edge server to the Raspberry Pi, its arrival curve
should be known. The arrival curve of the traffic at its desti-
nation, which is the incoming arrival curve at the Raspberry
Pi, can be used to model the arrival curve at its source, which
is the edge server. This works because the rate of arrival curves
in the network will not change, and the bursts of the arrival
curves are non-decreasing if the network is globally stable
[12]. Thus, the arrival curve of a flow at any node on its path
can bound its arrival process at the source. In Table I, the rates
and bursts of the incoming arrival curves are much lower than
those of outgoing arrival curves. This is because the incoming
flow mostly contains acknowledgments and detection results,
which consume fewer network resources than transmitting
images. Knowing all the necessary information for network
calculus, the worst-case delay bounds can be calculated for
flows under different bandwidths. We can use Equation 11
to derive the worst-case delay bounds for different scenarios.
Figure 4 shows the boxplots for network delays and the
theoretical results of delay bounds under different bandwidths
in the wired network. The x-axis shows the bandwidth of the
NIC, and the y-axis represents the network delay. The delay
bound shown in the figure is derived using the service curve
β(t) = 16(r − 0.44). Since we use 16 Mbps as the rate of
the service curve and the probability of the route providing a
larger rate is about 92.0%, the frames in the network should
encounter a delay less than the derived delay bound in the
figure in about 92.0% cases [17]. Note that the network
delay equals the total feedback time minus the processing
time in both the edge server and the onboard computer. All
measurements in the experiment are done using local timers.
As we can see in Figure 4, delay bounds derived by network
calculus can bound the network delays in all scenarios in the
experiment.

In this section, we have done experiments in the single-
drone scenario to verify the effectiveness of delay bounds
derived by network calculus. From the result, we can conclude



(a) Selected bandwidth = 1000 
Mbps

(b) Number of drones= 10 (c) Frequency= 10

Fig. 5. How the number of drones, the frequency of taking photos, and the selected bandwidth influence the delay bounds

TABLE I
RATES AND BURSTS OF THE OUTGOING ARRIVAL CURVE UNDER

DIFFERENT BANDWIDTH RESTRICTIONS USING THE WIRELESS NETWORK

Bandwidth
restriction 4 Mbps 8 Mbps 12 Mbps 16 Mbps

Outgoing rate (Mbps) 4.12 9.36 10.40 13.60
Outgoing burst (Mb) 3.52 4.54 4.13 2.70
Incoming rate (Mbps) 0.04 0.06 0.06 0.07
Incoming burst (Mb) 0.03 0.03 0.03 0.02

network calculus can provide probabilistic delay bounds based
on the CDF of the stochastic service curve that can model the
delay performance in the ECOD using wireless networks.

VII. MODEL APPLICATION FOR THE DESIGN OF THE
ECOD PLATFORM

In this section, we apply the model described in Section
IV to study the relationships between the traffic profile, the
capacity of the network device, and the delay bound of a
hypothetical ECOD platform that is designed for DaaS.

The traffic profile of the network depends on two parame-
ters, which are the arrival curve for each drone and the number
of drones in the platform. Thus, the design space of the ECOD
platform contains four components i) traffic for each drone, ii)
the number of drones, iii) the service curve provided by the
access point, and iv) delay requirements by applications.

We assume that drones transmit images with a 1280*720
resolution. Then, the maximum burst is taken as the frame
size for incoming and outgoing flows in Table I. The arrival
curve can be calculated using Equation 12 after figuring out
period p. The arrival curves of the bidirectional flows of drone
i are αi1 = 4.34/p+4.34 and αi2 = 0.03/p+0.03. p decides
the frequency of taking a photo by each drone. We assume that
all drones have the same p for the same application scenario.

For the service curve, we assume that the all service
curves have a fixed 0.1 s latency in this scenario. Then, a
rate/bandwidth should be selected from the stochastic service

curve based on the model requirement (percentage of scenarios
required to be modeled by the network calculus result). Note
that this percentage is about 92% in Section VI.

Figure 5 shows how the selected bandwidth, the number of
drones, and the frequency of taking photos influence the delay
bound in the ECOD platform. Note that we only choose one
selected bandwidth for each router based on the requirements
and the CDF of the bandwidth. Figure 5 (a) shows how the
frequency/( 1p and the number of drones influence the delay
bound when the selected bandwidth of the access point is
fixed. Figure 5 (b) depicts how the selected bandwidth and the
frequency influence delay bound when the number of drones
is fixed. Figure 5 (c) illustrates the influence of the selected
bandwidth and the frequency on the delay bound when the
number of drone is fixed. Based on the contour figure, we can
conclude that when the frequency and the number of drones
increase, the delay bound also increases. When the selected
bandwidth increases, the delay bound decreases.

Figure 5 provides a principle guideline for the design of
the ECOD platform. If we know any three components of
the four in the design space, we can easily calculate the
fourth one. For example, if we know the bandwidth is 1000
Mbps, the frequency is 2, and the delay requirement is 0.3
s, it is easy to find that the maximum number of drones
can be accommodated by the ECOD platform meeting all
the requirements is 8. This number can be directly read from
Figure 5 (a). If we know two components, we can find a set of
combinations of the other components to meet the requirement
using our approach. For example, if we know the selected
bandwidth is 1000 Mbps, and the delay requirements is 0.3
s, any combination of the number of drones and the frequency
on the contour below the blue plane, which shows the plane
with delay bound equaling 0.3 s, in Figure 6 meets the delay
and bandwidth requirements. If there is only one component
having requirements, the design will be more flexible. We can
draw the figure with the known component like Figure 5, and



Fig. 6. Candidates of combinations of the number of drones and the frequency
when the bandwidth is 1000 Mbps and the delay requirement is 0.3 s

any point on the contour can be a feasible design.
In this section, we have provided a principled approach to

the ECOD platform design based on wireless networks (4G,
5G, and WiFi). There are totally four components in the design
space, namely the delay requirements, the number of drones,
the frequency, and the selected bandwidth of the access point.
We propose a method of designing the ECOD platform based
on the knowledge of any component in the design space.

VIII. CONCLUSION

In this paper, we have modeled and analyzed the delay per-
formance of an ECOD platform for DaaS using network cal-
culus. Moreover, we propose a measurement-based approach
to identify the parameters for network calculus based on the
real testbed. The effectiveness of the network-calculus-based
model and analysis is verified using our testbed. Network
calculus can also provide a principled approach to designing
an ECOD platform based on its requirements. Knowing the
requirements of any design component, we can propose a
set of combinations of the other design components in the
ECOD platform to meet all the requirements based on network
calculus.

ACKNOWLEDGMENT

This work is supported by NSF Award No. 1646458 and
No. 2146968. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the
author(s) and do not necessarily reflect the views of the
sponsors of the research.

REFERENCES

[1] C. Bernstein. “What is drone services (UAV services)?” Tech Target.
https://www.techtarget.com/iotagenda/definition/drone-services-UAV-s
ervices (accessed Jun. 23, 2022).

[2] ”Applications and Uses for Multirotor Drones.” Rise Above. https://ri
seabove.com.au/pages/uav-applications-and-uses (accessed Jun. 23,
2022).

[3] W. Yu et al., ”A Survey on the Edge Computing for the Internet of
Things,” in IEEE Access, vol. 6, pp. 6900-6919, 2018, doi: 10.1109/AC-
CESS.2017.2778504.

[4] Liu, L., Li, H. & Gruteser, M. Edge Assisted Real-Time Object De-
tection for Mobile Augmented Reality. The 25th Annual International
Conference On Mobile Computing And Networking. (2019), https:
//doi.org/10.1145/3300061.3300116

[5] J. Wang et al., ”Edge-Based Live Video Analytics for Drones,” in IEEE
Internet Computing, vol. 23, no. 4, pp. 27-34, 1 July-Aug. 2019, doi:
10.1109/MIC.2019.2909713.

[6] B. Zhou, I. Howenstine, S. Limprapaipong and L. Cheng, ”A Survey
on Network Calculus Tools for Network Infrastructure in Real-Time
Systems,” in IEEE Access, vol. 8, pp. 223588-223605, 2020, doi:
10.1109/ACCESS.2020.3043600.

[7] Python 3 Network Packet Sniffer. (2021). Accessed: Jun. 23, 2022.
[Online]. Available: https://github.com/EONRaider/Packet-Sniffer

[8] G. K. Wallace, ”The JPEG still picture compression standard,” in IEEE
Transactions on Consumer Electronics, vol. 38, no. 1, pp. xviii-xxxiv,
Feb. 1992, doi: 10.1109/30.125072.

[9] YOLOv5. (2022). Ultralytics. Accessed: Jun. 23, 2022. [Online]. Avail-
able: https://github.com/ultralytics/yolov5

[10] B. Zhou and L. Cheng, ”A Reality-Conforming Approach for QoS
Performance Analysis of AFDX in Cyber-Physical Avionics Systems,”
2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS), 2021, pp. 1-6, doi: 10.1109/IWQOS52092.2021.9521335.

[11] Wonder Shaper. (2021). [Online]. Available: https://github.com/magni
fic0/wondershaper

[12] Bouillard, A. Stability and performance guarantees in networks with
cyclic dependencies. ArXiv. abs/1810.02623 (2018)

[13] Le Boudec, J. & Thiran, P. Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet. (2004, 6)

[14] Yang, Huan, and Liang Cheng. ”Bounding network-induced delays of
wireless prp infrastructure for industrial control systems.” ICC 2019-
2019 IEEE International Conference on Communications (ICC). IEEE,
2019.

[15] Zhang, Lianming, Jianping Yu, and Xiaoheng Deng. ”Modelling the
guaranteed QoS for wireless sensor networks: a network calculus
approach.” EURASIP Journal on Wireless Communications and Net-
working 2011.1 (2011): 1-14.

[16] Zhou, Boyang, and Liang Cheng. ”A Reality-Conforming Approach
for QoS Performance Analysis of AFDX in Cyber-Physical Avionics
Systems.” 2021 IEEE/ACM 29th International Symposium on Quality
of Service (IWQOS). IEEE, 2021.

[17] Goldsmith, Andrea J., and Pravin P. Varaiya. ”Capacity of fading chan-
nels with channel side information.” IEEE transactions on information
theory 43.6 (1997): 1986-1992.

[18] Zhao, Ming, Yujin Li, and Wenye Wang. ”Modeling and analytical study
of link properties in multihop wireless networks.” IEEE Transactions on
Communications 60.2 (2012): 445-455.

[19] She, Huimin, et al. ”Modeling and analysis of Rayleigh fading channels
using stochastic network calculus.” 2011 IEEE Wireless Communica-
tions and Networking Conference. IEEE, 2011.

[20] Martins, Wander Mendes, et al. ”A computer vision based algorithm
for obstacle avoidance.” Information Technology-New Generations.
Springer, Cham, 2018. 569-575.

[21] Tanghe, Emmeric, et al. ”The industrial indoor channel: large-scale and
temporal fading at 900, 2400, and 5200 MHz.” IEEE Transactions on
Wireless Communications 7.7 (2008): 2740-2751.

[22] Matsubara, Yoshitomo, and Marco Levorato. ”Neural compression and
filtering for edge-assisted real-time object detection in challenged net-
works.” 2020 25th International Conference on Pattern Recognition
(ICPR). IEEE, 2021.

[23] Kim, Seung-Wook, et al. ”Edge-network-assisted real-time object detec-
tion framework for autonomous driving.” IEEE Network 35.1 (2021):
177-183.

[24] Wang, Xu, et al. ”Edgeduet: Tiling small object detection for edge
assisted autonomous mobile vision.” IEEE INFOCOM 2021-IEEE Con-
ference on Computer Communications. IEEE, 2021.


